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Every secret shared is vulnerable at three times: 
when the secret is held, being sent, and being 
used. In today’s digital parlance, we call these 
data at rest, data in transit, and data in use, respec-

tively. Although we have sophisticated and efficient solu-
tions for the first two cases, we lack a tractable solution to 
the third. If protecting data in use is the Holy Grail of data 
privacy, homomorphic encryption (HE) and related tech-
nologies are its Galahad.

HE HISTORY
In 1978, a group of cryptographers noted 
the unintentional but intriguing prop-
erty of their newly unveiled Rivest–
Shamir–Adleman (RSA) algorithm by 
which operations could be applied di-
rectly to encrypted data without decryp-
tion and the resultant still be valid when 
decrypted—a mathematical property 
called homomorphism. In their seminal 
work “On Data Banks and Privacy Homo-
morphisms,” Rivest, Adelman, and Der-
touzos (RAD), outlined a set of special 
encryption functions they called privacy 
homomorphisms.1 They used the example 

of a small loan company that encrypts their sensitive loan 
data (for example, loanees, balances, and payments) using 
a special privacy homomorphism, sends the encrypted 
data to an outside party, and makes requests on these 
data such as average loan balance outstanding and up-
coming loan payments. The outside party performs these 
operations and returns the (still-encrypted) response. The 
loan company decrypts the response to get the answer to 
their query.

The beauty of this procedure is that data are shared and 
used without the outside party ever having access to the 
original data themselves, thereby guaranteeing privacy. 
Although the paper outlined a solid approach based on 
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properties found in RSA, there was only 
one small catch: How would one build 
a special privacy homomorphism? This 
took more than three decades to solve.

In his 2009 doctoral dissertation, 
modestly titled “A Fully Homomorphic 
Encryption Scheme,” Craig Gentry 
outlined how one could build special 
privacy homomorphism, now called a 
fully HE (FHE), using “ideal lattices,” a 
noise injector, and recursion.2 Finally, 
a conceptual scheme had been devel-
oped showing how one would build an 
FHE. The rub is that this procedure pro-

duced encrypted data that were tens 
of thousands of times larger than the 
originals and took millions of times 
longer to operate on. This relegates 
FHE to minute data sets and uncom-
plicated operational queries. Nonethe-
less, the treasure is still there today, 
and the quest continues.

HE TODAY
Since RAD and Gentry’s publications, 
the cadre of academic and commercial 
HE research projects has grown steadily, 
producing orders-of-magnitude per-
formance and storage improvements. 
Many of these efforts have explored 
relaxing the number of addition and 
multiplication operations allowed on 
encrypted data and loosely fall into the 
following four levels3:

1. FHE: an unlimited number of 
both addition and multiplica-
tion operations.

2. Somewhat HE: a limited number 
of either addition or multiplica-
tion operations, but not both.

3. Partially HE: only one addition 
or multiplication operation, but 
not both.

4. Leveled HE: relinearization and 
modulus reduction performed on 
a limited number of operations.

Several derivative HE schemes have 
been developed to squeeze more en-
cryption out of fewer resources, with the 
most common including fast fully ho-
momorphic encryption over the torus,4 
Brakerski-Gentry-Vaikuntanathan,5 
Brakerski/Fan-Vercauteren,6 and Cheon 
Kim Kim Song,7 but others such as  
Palisade, software-optimized encryp-
tion algorithm by Microsof, homomor-
phic encryption library by IBM, and 
homomorphic encryption for arithme-
tic of approximate numbers have also 
gained popularity.

Today, HE solutions are joined by 
several other methods to help protect 
data in use. Collectively called priva-
cy-preserving computation techniques 
(PPCTs), these hide information while 
allowing computation over it3,8:

 › Trusted execution environments: 
hardware solutions that 
encrypt portions of process 
memory to prevent side-chan-
nel attacks.

 › Secure multiparty computa-
tion: multiple parties provide 
encrypted input data, perform 
computations across data from 
all parties, and output a shared 
result to all parties.

 › Zero-knowledge proofs: an itera-
tive cryptographical construct 
in which a requester (prover) 
can prove to the server (verifier) 
that they have a given piece of 
knowledge without providing 
any information about the 
knowledge itself.

 › Federated learning: allows artifi-
cial intelligence model training 
by different parties without 
revealing any party’s data to 
another.

 › Differential privacy: guarantees 
an individual’s data privacy and 

anonymity while allowing the 
calculation of population-wide 
statistics.

 › Private set intersection: allows 
multiple parties to compare en-
crypted versions of their data to 
compute and share the intersec-
tion of these sets.

INCREASING DEMAND FOR 
PROTECTING DATA IN USE
In 2018, the Spectre and Meltdown 
breaches caught security teams flat-
footed. These novel breaches exploited 
CPU design flaws that allowed bad ac-
tors to peek over the fence into their 
neighbor’s memory space and view 
their unencrypted data as they were 
being processed.8 This spotlighted 
the gaps in securing data in use and 
brought HE and PPCT to the top of se-
curity conversations.

As data privacy regulations like 
the General Data Protection Regula-
tion and California Privacy Rights Act 
become increasingly restrictive on 
how data privacy must be treated, HE 
solutions show great promise in aiding 
compliance. By never allowing unen-
crypted user data to be transferred or 
seen, many privacy concerns are by-
passed or obviated … Imagine the ben-
efit of refactoring existing services to 
leverage HE- and PPCT-based solutions 
so that they work on encrypted user 
data without privacy concerns.

Customers increasingly demand 
control, visibility, and discretion of 
their personal data and will leave ser-
vices that do not provide adequate pri-
vacy protection. A service that provides 
value without using unencrypted user 
data has a distinct lead over those built 
on a “share and trust” model. The com-
pany that garners more trust may beat 
out competitors with more features and 
lower cost. In a privacy arms race, com-
panies that can exploit the “share noth-
ing” ethos of HE and PPCT will have a 
large competitive advantage.

HE and PPCT solutions can be readily 
applied to a growing number of compel-
ling use cases. The advent of public cloud 
services enables joint computational 

Only one small catch: How would one build  
a special privacy homomorphism?
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efforts among many diverse parties 
and data sources (some potentially un-
trusted), each governed by various data 
privacy regulations. Data-in-use secu-
rity solutions enable these parties to 
collaborate on computational analysis 
without revealing their underlying data 
sets and subjecting them to privacy reg-
ulation restrictions. A genetic analysis 
across medical research firms and agen-
cies, antifraud and antimoney launder-
ing detection across national law en-
forcement agencies, and risk analysis 
and transfer across financial services 
institutions are only a few examples 
enabled by computation on encrypted 
proprietary data.

This groundswell of real-world uses 
enabled by HE and PPCT have led Gart-
ner to predict that by 2025, “at least 
20% of companies will have a budget 
for projects that include FHE, up from 
less than 1% today” and “60% of large 
organizations will use one or more 
privacy-enhancing computation tech-
niques in analytics, business intelli-
gence, or cloud computing.”9

REMAINING CHALLENGES
Several significant challenges must 
be met before HE and PPCT become a 
common architectural feature in ap-
plications and services, including

 › Performance: The single great-
est inhibitor of widespread HE 
adoption is undoubtedly per-
formance. In 2018, IBM released 
a streamlined version of HElib 
C++ that sped up computation 
by 75 times over the previous 
version and two million-times 
faster than the version from 
three years before. Despite this 
dramatic performance boost, 
computation is still about one 
million-times slower than oper-
ations on plaintext.10 So, a 4-ms 
plaintext operation will take its 
HE counterpart about an hour. 
This performance gap must be 
reduced by several orders of 
magnitude before it sees wide-
spread adoption.

 › Consumability: A cursory survey 
of HE and PPCT techniques on 
the market today reveals elab-
orate algorithms and concepts 
that require skills not found in 
most organizations. Although 
the HE community and skill 
pool increases steadily each 
year, mainstream adoption will 
require an arsenal of highly 
technical solution providers to 
make these techniques consum-
able and verifiable. Promising 
start-ups such as Baffle, Duality, 
Enveil, Inpher, Titaniam, and 
Tripleblind.ai are currently 
joining industry stalwarts like 
IBM and Microsoft to provide 
readily consumable products 
and services to keep pace with 
growing data-in-use protection 
demands. As these solutions ma-
ture and expand, wider adoption 
will follow.

 › Full query support: The query op-
erations supported on encrypted 
data varies by application and 
use case. Eventually, HE and 
PPCT solutions will need to 
support a full arsenal of query 
requests on par with today’s 
Standard Query Language data 
management systems. Certainly, 
point applications can be built 
with more rudimentary opera-
tions, but the ability to “flip on 
the privacy switch” for a given 
data source will open data-in-use 
protection to most existing and 
future applications.

 › Standards: Standards are 
presently being created to 
systematize frameworks for 
the research, development, and 
adoption of HE security, appli-
cation programming interfaces, 
and applications. Although the 
2018 “Homomorphic Encryption 
Standard” by community-based 
https://homomorphicencryption. 
org11 is now de facto, there is a 
growing need for adapting and 
evolving the standard to apply 
to expanded parameter sets.12 

Others await government or 
international organizations such 
as the International Organi-
zation for Standardization or 
National Institute of Standards 
and Technology to publish sanc-
tioned standards. Until math-
ematically sound uniformity 
is adopted across HE and PPCT 
solutions, a solution’s overall 
security and interoperability will 
not be readily verifiable by the 
consumer or user.

Despite current HE and PPCT chal-
lenges, the potential of protecting data in 
use is irresistible. Governments, medical 
establishments, universities, financial 
institutes, and law enforcement agencies 
“desperately want data-in-use security to 
become a reality.”13 This is coming.

THE FUTURE OF 
PROTECTING DATA IN USE
In anticipation of meeting today’s chal-
lenges, several trends indicate what 
tomorrow’s data-in-use protection will 
look like:

 › On-demand services: Several 
firms, including IBM,14 are 
now offering HE services, and 
public cloud vendors will soon 
provide HE as a service too. 
These types of services will 
replace the specialized knowl-
edge, systems, processes, and 
tools required to implement 
an HE and PPCT solution with a 
simple monthly bill.

 › HE on a chip: Several efforts 
outlining how to build a 
custom fully homomorphic 
cryptoprocessor from the 
ground up have been around 
for more than a decade.15 Re-
cently however, several efforts 
have been launched to create 
a specialized processor opti-
mized for HE computations. 
One such Indonesian effort 
uses low-cost programmable 
floating point gate arrays to 
achieve an order-of-magnitude 
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performance gain over tradi-
tional CPU-based systems.16

 › Data-in-use security systems: 
An alternate approach uses a 
layered framework of HE and 
PPCT technologies engineered 
into a function system to 
accomplish what individual 
technologies are incapable 
of today. One such product 
recently made available to 
the market is Titaniam, built 
on differential privacy and 
multiparty compute with no 
HE at all. Titaniam’s solution 
manages the entire data lifecy-
cle in which sensitive data are 
always encrypted, protecting 
them from careless transfer, 
loss, or theft by a bad actor. “It’s 
a system, not just an algorithm, 
and so we can rely on the 
engineering and not just the 
underlying math alone,” notes 
Arti Raman, CEO and founder 
of Titaniam.13 These systemic 
solutions not only hold the 
promise of bypassing current 
HE limitations, they also lay a 
firm foundation for layering 
other data-in-use security solu-
tions as they emerge.
 Another example is Baffle, 
which uses secure multiparty 
compute via database extensions 
to provide privacy-preserving 
data ingest, storage, and com-
putation. By handling only en-
crypted data, Baffle’s customers 
can move proprietary or protected 
information to the cloud without 
fear of disclosure. Baffle’s under-
lying techniques add only a small 
percentage to the performance 
profile and allow databases, data 
warehouses, ingest pipelines, and 
visualization tools to operate in 
a “plaintext-free” environment. 
“We view this as a change in the 
data pipeline architecture, with 
security built in, rather than a se-
curity solution that is bolted on,” 
comments Ameesh Divatia, CEO 
and cofounder of Baffle, Inc.17

 › Encryption by default: Using 
history to illustrate a point, 
when Transport Layer Secu-
rity (TLS) emerged in the early 
2000s to encrypt Internet 
traffic, it added a modest oper-
ational overhead compared to 
sending messages in plaintext. 
Before implementing a TLS 
solution, an engineer needed 
to show that the security 
risks of plaintext traffic were 
greater than the encryption 
speed penalty. Today, almost 
all network traffic runs on TLS 
and an engineer proposing a 
plaintext solution would need 
to justify why they would 
jeopardize security for such 
a modest performance gain. 
Similarly, solving these PPCT 
challenges foreshadow a world 
where data handling would be 
“encrypted with privacy-pre-
serving techniques by default 
and exceptions would need 
special justification,” predicts 
Jon Callas, director of technol-
ogy projects at the Electronic 
Frontier Foundation and co-
founder of the PGP Corporation 
and Blackphone.18

These predictions are only a small 
subset of the changes that privacy-pre-
serving solutions will bring to the in-
formation technology landscape.

Data-in-use protection and pri-
vacy-preserving schemes have 
come a long way from the first 

theoretical speculations to today’s 
layered PPCT solutions. Yet, there is 
still a long way to go and daunting 
challenges to solve. The promise un-
locked by privacy-preserving solu-
tions, however, far outweighs the 
time, effort, and investment of sur-
mounting today’s challenges. This 
might take years to evolve, but priva-
cy-preserving computation seems a 
certain destination. We are doomed 
to succeed. 
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